题目内容
已知△ABC中,cosB=
,cosC=
,BC=7
(1)求cosA
(2)求|
+
|.
| 11 |
| 14 |
| 13 |
| 14 |
(1)求cosA
(2)求|
| AB |
| AC |
(1)∵cosB=
,cosC=
,
∴sinB=
=
,sinC=
=
,
则cosA=cos[π-(B+C)]=-cos(B+C)=-cosBcosC+sinBsinC
=-
×
+
×
=-
;
(2)由正弦定理可得
=
=
,又BC=7,
所以AC=5,AB=3,
由|
+
|平方得:|
+
|2=
|2+
|2+2
•
=25+9+2×5×3cosA=34-15=19,
则|
+
|=
.
| 11 |
| 14 |
| 13 |
| 14 |
∴sinB=
| 1-cos2B |
5
| ||
| 14 |
| 1-cos2C |
3
| ||
| 14 |
则cosA=cos[π-(B+C)]=-cos(B+C)=-cosBcosC+sinBsinC
=-
| 11 |
| 14 |
| 13 |
| 14 |
5
| ||
| 14 |
3
| ||
| 14 |
| 1 |
| 2 |
(2)由正弦定理可得
| BC | ||||
|
| AC | ||||
|
| AB | ||||
|
所以AC=5,AB=3,
由|
| AB |
| AC |
| AB |
| AC |
| |AB |
| |AC |
| AB |
| AC |
=25+9+2×5×3cosA=34-15=19,
则|
| AB |
| AC |
| 19 |
练习册系列答案
相关题目