题目内容
已知O是△ABC内任意一点,连接AO、BO、CO并延长交对边于A′、B′、C′,则
+
+
=1,运用类比猜想,对于空间中四面体A-BCD有
+
+
+
=1
+
+
+
=1.
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OD′ |
| DD′ |
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OD′ |
| DD′ |
分析:先根据所给的定理写出猜想的定理,把面积类比成体积,把面积之和等于1,写成体积之和等于1,再进行证明.
解答:解:猜想:若O四面体ABCD内任意点,AO,BO,CO,DO并延长交对面于A′,B′,C′,D′,则
+
+
+
=1
用“体积法”证明如下:
+
+
+
=
+
+
+
=
=1
故答案为:
+
+
+
=1
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OD′ |
| DD′ |
用“体积法”证明如下:
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OD′ |
| DD′ |
=
| VO-BCD |
| VA-BCD |
| VO-CAD |
| VA-BCD |
| VO-ABD |
| VC-ABD |
| VO-ABC |
| VD-ABC |
| VABCD |
| VABCD |
故答案为:
| OA′ |
| AA′ |
| OB′ |
| BB′ |
| OC′ |
| CC′ |
| OD′ |
| DD′ |
点评:本题考查类比推理,是一个基础题,这种题目的解题的关键是要根据所给的定理类比出可能的定理,后面再进行证明.
练习册系列答案
相关题目