ÌâÄ¿ÄÚÈÝ
4£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶Ô±ßµÄ³¤·Ö±ðΪa£¬b£¬c£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄ¸öÊýÊÇ£®£¨¡¡¡¡£©¢ÙÈôab£¾c2£¬Ôò$C£¼\frac{¦Ð}{3}$
¢ÚÈôa+b£¾2c£¬Ôò$C£¼\frac{¦Ð}{3}$
¢ÛÈôa3+b3=c3£¬Ôò$C£¼\frac{¦Ð}{2}$
¢ÜÈô£¨a+b£©c£¼2ab£¬Ôò$C£¾\frac{¦Ð}{2}$
¢ÝÈô£¨a2+b2£©c2£¼2a2b2£¬Ôò$C£¾\frac{¦Ð}{3}$£®
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ¢ÙÀûÓÃÓàÏÒ¶¨Àí£¬½«c2·Å´óΪab£¬ÔÙ½áºÏ¾ùÖµ¶¨Àí¼´¿ÉÖ¤Ã÷cosC£¾$\frac{1}{2}$£¬´Ó¶øÖ¤Ã÷C£¼$\frac{¦Ð}{3}$£»¢Ú£»¢ÚÀûÓÃÓàÏÒ¶¨Àí£¬½«c2·Å´óΪ$£¨\frac{a+b}{2}£©^{2}$£¬ÔÙ½áºÏ¾ùÖµ¶¨Àí¼´¿ÉÖ¤Ã÷cosC£¾$\frac{1}{2}$£¬¢ÛÀûÓ÷´Ö¤·¨£¬¼ÙÉèC¡Ý$\frac{¦Ð}{2}$ʱ£¬ÍƳöÓëÌâÉèì¶Ü£¬¼´¿ÉÖ¤Ã÷´ËÃüÌâÕýÈ·£»¢Ü¢Ý£¬Ö»Ðè¾Ù·´Àý¼´¿ÉÖ¤Ã÷ÆäΪ¼ÙÃüÌ⣬¿É¾Ù·ûºÏÌõ¼þµÄµÈ±ßÈý½ÇÐΣ®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ab£¾c2⇒cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}£¾\frac{2ab-ab}{2ab}=\frac{1}{2}$£¬⇒C£¼$\frac{¦Ð}{3}$£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Ú£¬a+b£¾2c⇒cosC¨T$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}£¾\frac{4£¨{a}^{2}+{b}^{2}£©-£¨a+b£©^{2}}{8ab}$¡Ý$\frac{1}{2}$⇒C£¼$\frac{¦Ð}{3}$£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬µ±C$¡Ý\frac{¦Ð}{2}$ʱ£¬c2¡Ýa2+b2⇒c3¡Ýca2+cb2£¾a3+b3Óëa3+b3=c3ì¶Ü£¬¹ÊÕýÈ·£»
¶ÔÓڢܣ¬È¡a=b=2£¬c=1£¬Âú×㣨a+b£©c£¼2abµÃ£ºC£¼$\frac{¦Ð}{3}£¼\frac{¦Ð}{2}$£¬¹Ê´í£»
¶ÔÓڢݣ¬È¡a=b=$\sqrt{2}$£¬c=1£¬Âú×㣨a2+b2£©c2£¼2a2b2£¬´ËʱÓÐC£¼$\frac{¦Ð}{3}$£¬¹Ê´íÎó£®
¹ÊÑ¡£º
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˽âÈý½ÇÐεÄ֪ʶ£¬·ÅËõ·¨Ö¤Ã÷²»µÈʽµÄ¼¼ÇÉ£¬·´Ö¤·¨ºÍ¾Ù·´Àý·¨Ö¤Ã÷²»µÈʽ£¬ÓÐÒ»¶¨µÄÄѶȣ¬ÊôÖеµÌ⣮
| A£® | 20 | B£® | 14 | C£® | 4 | D£® | 24 |
| A£® | m£¾1 | B£® | 1£¼m£¼8 | C£® | m£¾8 | D£® | 0£¼m£¼1»ò m£¾8 |
| A£® | ¸ÃÃüÌâµÄÄæÃüÌâÎªÕæ£¬Äæ·ñÃüÌâÒ²ÎªÕæ | |
| B£® | ¸ÃÃüÌâµÄÄæÃüÌâÎªÕæ£¬Äæ·ñÃüÌâÒ²¼Ù | |
| C£® | ¸ÃÃüÌâµÄÄæÃüÌâΪ¼Ù£¬Äæ·ñÃüÌâÎªÕæ | |
| D£® | ¸ÃÃüÌâµÄÄæÃüÌâΪ¼Ù£¬Äæ·ñÃüÌâҲΪ¼Ù |
| A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{2}}}{2}$ | C£® | $-\frac{1}{2}$ | D£® | $-\frac{{\sqrt{2}}}{2}$ |
| A£® | 36 | B£® | 72 | C£® | 24 | D£® | 2 520 |