题目内容

20.在△ABC中,角A,B,C所对的边分别是a,b,c,已知$c=\sqrt{6},C=\frac{2π}{3}$.
(Ⅰ)若$a=\sqrt{2}$,求b;
(Ⅱ)若sinB=2sinA,求△ABC的面积.

分析 (I)使用余弦定理列方程解出b;
(II)由sinB=2sinA得b=2a,代入余弦定理公式求出a,继而得出b,由面积公式S=$\frac{1}{2}absinC$求出面积.

解答 解:(Ⅰ)△ABC中,由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,即$cos\frac{2}{3}π=\frac{{{{(\sqrt{2})}^2}+{b^2}-{{(\sqrt{6})}^2}}}{{2•\sqrt{2}•b}}$=-$\frac{1}{2}$,
解得$b=-2\sqrt{2}$(舍去)或$b=\sqrt{2}$.
∴$b=\sqrt{2}$.
(Ⅱ)∵sinB=2sinA,∴b=2a,
又$cos\frac{2}{3}π=\frac{{{a^2}+{b^2}-{{(\sqrt{6})}^2}}}{2•a•b}$=-$\frac{1}{2}$,
∴$\frac{{{a^2}+4{a^2}-{{(\sqrt{6})}^2}}}{{4{a^2}}}=-\frac{1}{2}$,
解得${a^2}=\frac{6}{7}$.∴a=$\frac{\sqrt{6}}{\sqrt{7}}$,b=$\frac{2\sqrt{6}}{\sqrt{7}}$.
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\frac{\sqrt{6}}{\sqrt{7}}×\frac{2\sqrt{6}}{\sqrt{7}}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{7}$.

点评 本题考查了正弦定理,余弦定理解三角形,三角形的面积公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网