ÌâÄ¿ÄÚÈÝ
13£®£¨x2+x+1£©0=1
£¨x2+x+1£©1=x2+x+1
£¨x2+x+1£©2=x4+2x3+3x2+2x+1
£¨x2+x+1£©3=x6+3x5+6x4+7x3+6x2+3x+1
¡
¹Û²ì¶àÏîʽϵÊýÖ®¼äµÄ¹ØÏµ£¬¿ÉÒÔ·ÂÕÕÑî»ÔÈý½Ç¹¹ÔìÈçͼËùʾµÄ¹ãÒåÑî»ÔÈý½ÇÐΣ¬Æä¹¹Ôì·½·¨Îª£ºµÚ0ÐÐΪ1£¬ÒÔϸ÷ÐÐÿ¸öÊýÊÇËüÍ·ÉÏÓë×óÓÒÁ½¼çÉÏ3Êý£¨²»×ã3ÊýµÄ£¬È±ÉÙµÄÊý¼ÆÎª0£©Ö®ºÍ£¬µÚkÐй²ÓÐ2k+1¸öÊý£®ÈôÔÚ£¨1+ax£©£¨x2+x+1£©5µÄÕ¹¿ªÊ½ÖУ¬x8ÏîµÄϵÊýΪ67£¬ÔòʵÊýaֵΪ$\frac{26}{15}$£®
·ÖÎö ÓÉÌâÒâ¿ÉµÃ¹ãÒåÑî»ÔÈý½ÇÐεÚ5ÐÐΪ1£¬5£¬15£¬30£¬45£¬51£¬45£¬30£¬15£¬5£¬1£¬ËùÒÔ£¨1+ax£©£¨x2+x+1£©5µÄÕ¹¿ªÊ½ÖУ¬x8ÏîµÄϵÊýΪ15+30a=75£¬¼´¿ÉÇó³öʵÊýaµÄÖµ£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ¹ãÒåÑî»ÔÈý½ÇÐεÚ5ÐÐΪ1£¬5£¬15£¬30£¬45£¬51£¬45£¬30£¬15£¬5£¬1£¬
ËùÒÔ£¨1+ax£©£¨x2+x+1£©5µÄÕ¹¿ªÊ½ÖУ¬x8ÏîµÄϵÊýΪ15+30a=67£¬
ËùÒÔa=$\frac{26}{15}$£®
¹Ê´ð°¸Îª£º$\frac{26}{15}$£®
µãÆÀ ±¾Ì⿼²é¶þÏîʽ¶¨ÀíµÄÔËÓÃÒÔ¼°¹éÄÉÍÆÀí£¬½âÌâµÄ¹Ø¼üÔÚÓÚ·¢ÏÖËù¸øµÈʽµÄϵÊý±ä»¯µÄ¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®¿Õ¼äËıßÐÎABCDµÄËĸö¶¥µã¶¼ÔÚͬһÇòÃæÉÏ£¬E¡¢F·Ö±ðÊÇAB¡¢CDµÄÖе㣬ÇÒEF¡ÍAB£¬EF¡ÍCD£¬ÈôAB=8£¬CD=EF=4£¬Ôò¸ÃÇòµÄ°ë¾¶µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{{65\sqrt{2}}}{16}$ | B£® | $\frac{{65\sqrt{2}}}{8}$ | C£® | $\frac{{\sqrt{65}}}{2}$ | D£® | $\sqrt{65}$ |
8£®ÒÑÖª y=f £¨ x £© ÊǶ¨ÒåÔÚ R ÉϵÄżº¯Êý£¬ÇÒµ± x¡Ê£¨-¡Þ£¬0£©£¬f £¨ x £©+xf'£¨ x £©£¼0³ÉÁ¢£¨ f'£¨ x £© ÊǺ¯Êý f £¨ x£© µÄµ¼Êý£©£¬Èô a=$\frac{1}{2}$f £¨log2$\sqrt{2}$ £©£¬b=£¨ln 2 £© f £¨ln 2 £©£¬c=2f £¨-2 £©£¬Ôò a£¬b£¬c µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | a£¾b£¾c | B£® | b£¾a£¾c | C£® | c£¾a£¾b | D£® | a£¾c£¾b |
5£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÊäÈë¦È=$\frac{¦Ð}{180}$£¬n=1£¬Êä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©

| A£® | 90 | B£® | 91 | C£® | 180 | D£® | 270 |
2£®Èçͼ£¬¸ø³öµÄÊÇ$1+\frac{1}{3}+\frac{1}{5}+¡+\frac{1}{99}$µÄÖµµÄÒ»¸ö³ÌÐò¿òͼ£¬ÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©

| A£® | i£¼99 | B£® | i¡Ü99 | C£® | i£¾99 | D£® | i¡Ý99 |