题目内容
6.| A. | $\frac{3+\sqrt{17}}{4}$ | B. | 2 | C. | $\frac{1+\sqrt{17}}{4}$ | D. | 3 |
分析 连接BF1,AF2,由双曲线的定义,可得|AF2|=2a+2c,|BF2|=2c-2a,在△AF1F2中,和△BF1F2中,运用余弦定理求得cos∠AF1F2,os∠BF2F1,由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,化简整理,由离心率公式计算即可得到所求值.
解答
解:连接BF1,AF2,
由双曲线的定义,可得|AF2|-|AF1|=2a,
|BF1|-|BF2|=2a,
由|BF1|=|AF1|=2c,
可得|AF2|=2a+2c,|BF2|=2c-2a,
在△AF1F2中,可得cos∠AF1F2=$\frac{(2c)^{2}+(2c)^{2}-(2a+2c)^{2}}{2•2c•2c}$=$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$,
在△BF1F2中,可得cos∠BF2F1=$\frac{(2c)^{2}+(2c-2a)^{2}-(2c)^{2}}{2•2c•(2c-2a)}$=$\frac{c-a}{2c}$,
由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,
可得$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$+$\frac{c-a}{2c}$=0,化为2c2-3ac-a2=0,
由e=$\frac{c}{a}$,可得2e2-3e-1=0,解得e=$\frac{3+\sqrt{17}}{4}$(负的舍去),
故选:A.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的余弦定理,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
18.点A、B、C是抛物线y2=4x上不同的三点,若点F(1,0)满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,则△ABF面积的最大值为( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{3\sqrt{6}}{2}$ | D. | 2$\sqrt{6}$ |