题目内容
13.求由直线y=6-x与曲线y=2$\sqrt{2x}$及x轴所围成的图形的面积.分析 先联立两个方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.
解答 解:$\left\{\begin{array}{l}{y=6-x}\\{y=2\sqrt{2x}}\end{array}\right.$解得:$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,
则所围成的图形的面积S=${∫}_{0}^{2}2\sqrt{2x}dx+\frac{1}{2}×4×4$=$\frac{4\sqrt{2}}{3}{x}^{\frac{3}{2}}{丨}_{0}^{2}$+8=$\frac{16}{3}$+8=$\frac{40}{3}$.
故S=$\frac{40}{4}$
点评 本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题
练习册系列答案
相关题目
3.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:
(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;
(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);
若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:回归直线的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:
| 学生序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 数学成绩xi | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
| 物理成绩yi | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);
若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:回归直线的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
| 76 | 83 | 812 | 526 |
4.某班有男生26人,女生24人,从中选一位同学为数学科代表,则不同选法的种数是( )
| A. | 50 | B. | 26 | C. | 24 | D. | 616 |
1.设集合A={x|x≥-1},B={x|y=$\sqrt{3{x}^{2}+5x-2}$},则A∩∁RB等于( )
| A. | {x|-1≤x$<\frac{1}{3}$} | B. | {x|-$\frac{1}{3}<x<2$} | C. | {x|-1$≤x≤\frac{1}{3}$} | D. | {x|-$\frac{1}{3}≤x≤2$} |
18.复数z=($\frac{i}{1-i}$)2,则复数2+z在复平面上对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.已知函数f(x)=sinωx-cosωx,ω>0是常数,x∈R,且图象上相邻两个最高点的距离为π,则下列说法正确的是( )
| A. | ω=1 | B. | 曲线y=f(x)关于点(π,0)对称 | ||
| C. | 曲线y=f(x)与直线$x=\frac{π}{2}$对称 | D. | 函数f(x)在区间$(0,\frac{π}{3})$单调递增 |