题目内容

5.已知f(x)的定义域为实数集R,?x∈R,f(3+2x)=f(7-2x),若f(x)=0恰有n个不同实数根,且这n个不同实数根之和等于75,则n=15.

分析 由条件可得f(x)=f(10-x),即图象关于x=5对称,可得f(x)=0n个不同实数根每两个根的和为10,只需求出共有几组10即可.

解答 解:?x∈R,f(3+2x)=f(7-2x),
∴令t=3+2x,2x=t-3.
∴f(t)=f(10-t)\
∴f(x)=f(10-x)
∵f(5)=0,
∵(75-5)÷10=7,
∴n=2×7+1=15.
故答案为15.

点评 考查了抽象函数的对称性和利用对称性解决实际问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网