题目内容

18.复数z=($\frac{i}{1-i}$)2,则复数2+z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,求出复数2+z在复平面上对应的点的坐标得答案.

解答 解:∵$z={(\frac{i}{1-i})^2}$=$[\frac{i(1+i)}{(1-i)(1+i)}]^{2}$=$(-\frac{1}{2}+\frac{i}{2})^{2}=(-\frac{1}{2})^{2}-\frac{i}{2}+(\frac{i}{2})^{2}=-\frac{i}{2}$,
∴2+z=2-$\frac{i}{2}$,
则复数2+z在复平面上对应的点的坐标为(2,-$\frac{1}{2}$),位于第四象限.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网