ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÏòÁ¿$\overrightarrow m$=£¨cosx-1£¬$\sqrt{3}$sinx£©£¬$\overrightarrow n$=£¨cosx+1£¬cosx£©£¬x¡ÊR£®f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÈôccosB+bcosC=1ÇÒf£¨A£©=0£¬Çó¡÷ABCÃæ»ý×î´óÖµ£®
·ÖÎö £¨1£©ÀûÓÃÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý¹«Ê½µÃµ½Èý½Çº¯Êýʽ£¬È»ºóÀûÓñ¶½Ç¹«Ê½µÈ»¯¼ò£¬Çóµ¥µ÷ÔöÇø¼ä£»
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬Çó³öA£¬È»ºó½èÖúÓÚÓàÏÒ¶¨ÀíÇó³öbc¡Ü1£¬´Ó¶øÇóÃæ»ýµÄ×îÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª$f£¨x£©={cos^2}x-1+\sqrt{3}sinxcosx=sin£¨{2x+\frac{¦Ð}{6}}£©-\frac{1}{2}$£®
Áî$2k¦Ð-\frac{¦Ð}{2}¡Ü2x+\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}$£¬
µÃf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä$[{k¦Ð-\frac{¦Ð}{3}£¬k¦Ð+\frac{¦Ð}{6}}]£¨{k¡ÊZ}£©$¡6£¨·Ö£©
£¨2£©$f£¨A£©=sin£¨{2A+\frac{¦Ð}{6}}£©-\frac{1}{2}=0$£¬ÓÖ0£¼A£¼¦Ð£¬ÔòA=$\frac{¦Ð}{3}$
£®ÓÖccosB+bcosC=1µÃa=1£¬
ÓÉÓàÏÒ¶¨ÀíµÃ$1={b^2}+{c^2}-2bccos\frac{¦Ð}{3}¡Ý2bc-bc$£®µÃbc¡Ü1£®
¡÷ABCÃæ»ýs=$\frac{1}{2}bcsin\frac{¦Ð}{3}¡Ü\frac{{\sqrt{3}}}{4}$
µ±ÇÒ½öµ±b=c¼´¡÷ABCΪµÈ±ßÈý½ÇÐÎÊ±Ãæ»ý×î´óΪ$\frac{{\sqrt{3}}}{4}$¡12£¨·Ö£©
µãÆÀ ±¾ÌâÒÔÏòÁ¿ÎªÔØÌ忼²éÁËÈý½Çº¯ÊýʽµÄ»¯¼ò¡¢ÓàÏÒ¶¨ÀíµÄÔËÓÃÒÔ¼°½âÈý½ÇÐΣ»ÊôÓÚÖеµÌ⣮
| A£® | bn=2n | B£® | bn=3n | C£® | bn=2n-1 | D£® | bn=3n-1 |
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | $\frac{1}{4}$ | D£® | 4 |