题目内容

6.成等差数列的三个正数的和等于12,并且这三个数分别加上1,4,11后成为等比数列{bn}中的b2,b3,b4,则数列{bn}的通项公式为(  )
A.bn=2nB.bn=3nC.bn=2n-1D.bn=3n-1

分析 设成等差数列的三个正数分别为a-d,a,a+d,由条件可得a=4,再由等比数列中项的性质,可得d的方程,解得d=1,求得等比数列的公比为2,首项为2,即可得到数列{bn}的通项公式.

解答 解:设成等差数列的三个正数分别为a-d,a,a+d,
可得3a=12,解得a=4,
即成等差数列的三个正数分别为4-d,4,4+d,
这三个数分别加上1,4,11后成为等比数列{bn}中的b2,b3,b4
可得(4+4)2=(1+4-d)(4+d+11),
解方程可得d=1(-11舍去),
则b2=4,b3=8,b4=16,即有b1=2,
则bn=2•2n-1=2n
故选:A.

点评 本题考查等差数列的通项公式和等比数列的中项的性质和通项公式,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网