题目内容

11.将函数f(x)=cos(x+$\frac{π}{6}$)图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是(  )
A.[-$\frac{π}{6}$,$\frac{π}{3}$]B.[-$\frac{π}{3}$,$\frac{5π}{3}$]C.[-$\frac{π}{6}$,$\frac{11π}{6}$]D.[-$\frac{π}{12}$,$\frac{5π}{12}$]

分析 根据三角函数的图象变换关系求出g(x)的解析式,结合三角函数的单调性进行求解即可.

解答 解:将函数f(x)=cos(x+$\frac{π}{6}$)图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,
则y=cos(2x+$\frac{π}{6}$),
即g(x)=cos(2x+$\frac{π}{6}$),
由2kπ≤2x+$\frac{π}{6}$≤2kπ+π,k∈Z,
得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
即函数的单调递减区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
当k=0时,单调递减区间为[-$\frac{π}{12}$,$\frac{5π}{12}$],
故选:D.

点评 本题主要考查三角函数的解析式的求解以及三角函数单调性的求解,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网