ÌâÄ¿ÄÚÈÝ
| 3 |
£¨¢ñ£©Óοͼ×ÑØCA´Ó¾°µãC³ö·¢ÐÐÖÁÓë¾°µãBÏà¾à
| 7 |
£¨¢ò£©¼×ÑØCA´Ó¾°µãC³ö·¢Ç°Íù¾°µãA£¬ÒÒÑØAB´Ó¾°µãA³ö·¢Ç°Íù¾°µãB£¬¼×ÒÒͬʱ³ö·¢£¬¼×µÄËÙ¶ÈΪ1ǧÃ×/Сʱ£¬ÒÒµÄËÙ¶ÈΪ2ǧÃ×/Сʱ£®Èô¼×ÒÒÁ½ÈËÖ®¼äͨ¹ý¶Ô½²»úÁªÏµ£¬¶Ô½²»úÔڸþ°ÇøÄÚµÄ×î´óͨ»°¾àÀëΪ3ǧÃ×£¬ÎÊÓж೤ʱ¼äÁ½È˲»ÄÜͨ»°£¿£¨¾«È·µ½0.1Сʱ£¬²Î¿¼Êý¾Ý£º
| 5 |
| 15 |
¿¼µã£º½âÈý½ÇÐεÄʵ¼ÊÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,½âÈý½ÇÐÎ
·ÖÎö£º£¨¢ñ£©ÔÚRt¡÷ABCÖУ¬Çó³ö¡ÏC=30¡ã£¬ÔÚ¡÷PBCÖУ¬ÓÉÓàÏÒ¶¨Àí£¬ÇóµÃPC£¬ÔÚ¡÷PBCÖУ¬ÓÉÕýÏÒ¶¨ÀíÇósin¦ÁµÄÖµ£»
£¨¢ò£©Éè¼×³ö·¢ºóµÄʱ¼äΪtСʱ£¬¢Ùµ±1¡Üt¡Ü4ʱ£¬ÒÒÔÚ¾°µãB´¦£¬¼×ÔÚÏß¶ÎPAÉÏ£¬¼×ÒÒ¼äµÄ¾àÀëd¡ÜBP£¼3£¬´Ëʱ²»ºÏÌâÒ⣻¡£¨9·Ö£©
¢Úµ±0¡Üt£¼1ʱ£¬ÉèÒÒÔÚÏß¶ÎABÉϵÄλÖÃΪµãQ£¬ÔÚ¡÷AMQÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ½áÂÛ£®
£¨¢ò£©Éè¼×³ö·¢ºóµÄʱ¼äΪtСʱ£¬¢Ùµ±1¡Üt¡Ü4ʱ£¬ÒÒÔÚ¾°µãB´¦£¬¼×ÔÚÏß¶ÎPAÉÏ£¬¼×ÒÒ¼äµÄ¾àÀëd¡ÜBP£¼3£¬´Ëʱ²»ºÏÌâÒ⣻¡£¨9·Ö£©
¢Úµ±0¡Üt£¼1ʱ£¬ÉèÒÒÔÚÏß¶ÎABÉϵÄλÖÃΪµãQ£¬ÔÚ¡÷AMQÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ½áÂÛ£®
½â´ð£º
½â£º£¨¢ñ£©ÔÚRt¡÷ABCÖУ¬AB=2£¬BC=2
£¬¡à¡ÏC=30¡ã
ÔÚ¡÷PBCÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃBC2+PC2-2BC•PC•cos30¡ã=BP2£¬¼´12+PC2-2¡Á2
¡ÁPC¡Á
=7
»¯¼ò£¬µÃPC2-6PC+5=0£¬½âµÃPC=1»òPC=5£¨ÉáÈ¥£©¡¡¡£¨3·Ö£©
ÔÚ¡÷PBCÖУ¬ÓÉÕýÏÒ¶¨ÀíµÃ
=
£¬¼´
=
¡àsin¦Á=
¡£¨6·Ö£©
£¨¢ò£©Rt¡÷ABCÖУ¬BA=2£¬BC=2
£¬AC=
=4
Éè¼×³ö·¢ºóµÄʱ¼äΪtСʱ£¬ÔòÓÉÌâÒâ¿ÉÖª0¡Üt¡Ü4£¬Éè¼×ÔÚÏß¶ÎCAÉϵÄλÖÃΪµãM£¬AM=4-t
ÔÚ¡÷PBCÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃBC2+PC2-2BC•PC•cos30¡ã=BP2£¬
¼´12+PC2-2¡Á2
¡ÁPC¡Á
=7£¬»¯¼òµÃPC2-6PC+5=0
½âµÃPC=1»òPC=5£¨ÉáÈ¥£©
¢Ùµ±1¡Üt¡Ü4ʱ£¬ÒÒÔÚ¾°µãB´¦£¬¼×ÔÚÏß¶ÎPAÉÏ£¬¼×ÒÒ¼äµÄ¾àÀëd¡ÜBP£¼3£¬´Ëʱ²»ºÏÌâÒ⣻¡£¨9·Ö£©
¢Úµ±0¡Üt£¼1ʱ£¬ÉèÒÒÔÚÏß¶ÎABÉϵÄλÖÃΪµãQ£¬ÔòAQ=2t
ÔÚ¡÷AMQÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃ£¬MQ2=£¨4-t£©2+£¨2t£©2-2¡Á2t¡Á£¨4-t£©¡Ácos60¡ã=7t2-16t+16
ÁîMQ£¾3¼´MQ2£¾9£¬µÃ7t2-16t+7£¾0£¬½âµÃt£¼
»òt£¾
¡à0¡Üt£¼
¡£¨12·Ö£©
×ÛÉÏ£¬µ±0¡Üt£¼
ʱ£¬¼×¡¢ÒÒ¼äµÄ¾àÀë´óÓÚ3Ã×£®
ÓÖ
¡Ö0.6£¬¹ÊÁ½È˲»ÄÜͨ»°µÄʱ¼ä´óԼΪ0.6Сʱ¡¡¡£¨13·Ö£©
| 3 |
ÔÚ¡÷PBCÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃBC2+PC2-2BC•PC•cos30¡ã=BP2£¬¼´12+PC2-2¡Á2
| 3 |
| ||
| 2 |
»¯¼ò£¬µÃPC2-6PC+5=0£¬½âµÃPC=1»òPC=5£¨ÉáÈ¥£©¡¡¡£¨3·Ö£©
ÔÚ¡÷PBCÖУ¬ÓÉÕýÏÒ¶¨ÀíµÃ
| PC |
| sin¦Á |
| PB |
| sin30¡ã |
| 1 |
| sin¦Á |
| ||
|
¡àsin¦Á=
| ||
| 14 |
£¨¢ò£©Rt¡÷ABCÖУ¬BA=2£¬BC=2
| 3 |
| BA2+BC2 |
Éè¼×³ö·¢ºóµÄʱ¼äΪtСʱ£¬ÔòÓÉÌâÒâ¿ÉÖª0¡Üt¡Ü4£¬Éè¼×ÔÚÏß¶ÎCAÉϵÄλÖÃΪµãM£¬AM=4-t
ÔÚ¡÷PBCÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃBC2+PC2-2BC•PC•cos30¡ã=BP2£¬
¼´12+PC2-2¡Á2
| 3 |
| ||
| 2 |
½âµÃPC=1»òPC=5£¨ÉáÈ¥£©
¢Ùµ±1¡Üt¡Ü4ʱ£¬ÒÒÔÚ¾°µãB´¦£¬¼×ÔÚÏß¶ÎPAÉÏ£¬¼×ÒÒ¼äµÄ¾àÀëd¡ÜBP£¼3£¬´Ëʱ²»ºÏÌâÒ⣻¡£¨9·Ö£©
¢Úµ±0¡Üt£¼1ʱ£¬ÉèÒÒÔÚÏß¶ÎABÉϵÄλÖÃΪµãQ£¬ÔòAQ=2t
ÔÚ¡÷AMQÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃ£¬MQ2=£¨4-t£©2+£¨2t£©2-2¡Á2t¡Á£¨4-t£©¡Ácos60¡ã=7t2-16t+16
ÁîMQ£¾3¼´MQ2£¾9£¬µÃ7t2-16t+7£¾0£¬½âµÃt£¼
8-
| ||
| 7 |
8+
| ||
| 7 |
¡à0¡Üt£¼
8-
| ||
| 7 |
×ÛÉÏ£¬µ±0¡Üt£¼
8-
| ||
| 7 |
ÓÖ
8-
| ||
| 7 |
µãÆÀ£º±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢¡°x£¾5¡±ÊÇ¡°x£¾3¡±±ØÒª²»³ä·ÖÌõ¼þ |
| B¡¢ÃüÌâ¡°¶Ô?x¡ÊR£¬ºãÓÐx2+1£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬Ê¹µÃx2+1¡Ü0¡± |
| C¡¢?m¡ÊR£¬Ê¹º¯Êýf£¨x£©=x2+mx£¨x¡ÊR£©ÊÇÆæº¯Êý |
| D¡¢Éèp£¬qÊǼòµ¥ÃüÌ⣬Èôp¡ÅqÊÇÕæÃüÌ⣬Ôòp¡ÄqÒ²ÊÇÕæÃüÌâ |