题目内容
已知cosα=
,cos(α-β)=
,且0<β<α<
,
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
| 1 |
| 7 |
| 13 |
| 14 |
| π |
| 2 |
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
(Ⅰ)由cosα=
,0<α<
,得sinα=
=
=
∴tanα=
=
×
=4
,于是tan2α=
=
=-
(Ⅱ)由0<β<α<
,得0<α-β<
,
又∵cos(α-β)=
,∴sin(α-β)=
=
=
由β=α-(α-β)得:cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=
×
+
×
=
所以β=
.
| 1 |
| 7 |
| π |
| 2 |
| 1-cos2α |
1-(
|
4
| ||
| 7 |
∴tanα=
| sinα |
| cosα |
4
| ||
| 7 |
| 7 |
| 1 |
| 3 |
| 2tanα |
| 1-tan2α |
2×4
| ||
1-(4
|
8
| ||
| 47 |
(Ⅱ)由0<β<α<
| π |
| 2 |
| π |
| 2 |
又∵cos(α-β)=
| 13 |
| 14 |
| 1-cos2(α-β) |
1-(
|
3
| ||
| 14 |
由β=α-(α-β)得:cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=
| 1 |
| 7 |
| 13 |
| 14 |
4
| ||
| 7 |
3
| ||
| 14 |
| 1 |
| 2 |
所以β=
| π |
| 3 |
练习册系列答案
相关题目