题目内容

(1)已知cosα=
1
7
,cos(α+β)=-
11
14
,且α,β∈(0,
π
2
)
,求cosβ的值;
(2)已知α为第二象限角,且sinα=
2
4
,求
cos(
π
4
-α)
cos2α-sin(2α-π)+1
的值.
分析:(1)由已知可得sinα和sin(α+β),代入cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα,化简可得;
(2)由已知可得cosα的值,由三角函数的公式化简要求的式子,代入化简可得.
解答:解:(1)∵cosα=
1
7
,cos(α+β)=-
11
14
α,β∈(0,
π
2
)

∴sinα=
1-cos2α
=
4
3
7
,sin(α+β)=
1-cos2(α+β)
=
5
3
14

∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=-
11
14
×
1
7
+
5
3
14
×
4
3
7
=
49
14×7
=
1
2

(2)∵α为第二象限角,sinα=
2
4

∴cosα=-
1-sin2α
=
14
4

cos(
π
4
-α)
cos2α-sin(2α-π)+1
=
2
2
cosα+
2
2
sinα
cos2α-sin2α+2sinαcosα+1

=
2
2
×
14
4
+
2
2
×
2
4
14
16
-
2
16
+2×
2
4
×
14
4
+1
=
28
+2
8
28+2
28
16
=
7
7
点评:本题考查两角和与差的三角函数公式,涉及三角函数的化简求值,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网