题目内容

7.已知实数a、b、c满足a+b+c=0,abc>0,则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的值小于0,.($\frac{1}{a}$$+\frac{1}{b}+\frac{1}{c}$与0比较)

分析 由条件可得 a、b、c中有2个是负数,有一个为正数.不妨设a<0,b<0,c>0,且|a|<|c|,利用不等式的基本性质可得答案.

解答 解:根据a+b+c=0,abc>0,可得 a、b、c中有2个是负数,有一个为正数.
不妨设a<0,b<0,c>0,且|a|<|c|,
∴$\frac{1}{|a|}$>$\frac{1}{|c|}$,∴-$\frac{1}{a}$>$\frac{1}{c}$.
而$\frac{1}{b}$<0,∴$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$<0,
故答案为:小于0.

点评 本题考查了分式的计算和正数与负数的性质以及绝对值的含义,不等式的基本性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网