题目内容
11.设等边三角形ABC的边长为6,若$\overrightarrow{BC}=3\overrightarrow{BE}$,$\overrightarrow{AD}=\overrightarrow{DC}$,则$\overrightarrow{BD}•\overrightarrow{AE}$=-18.分析 由已知得$\overrightarrow{BD}$=$\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC}$,$\overrightarrow{AE}$=$\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$,由此能求出$\overrightarrow{BD}•\overrightarrow{AE}$的值.
解答
解:∵等边三角形ABC的边长为6,$\overrightarrow{AD}=\overrightarrow{DC}$,
∴D为AC中点,∴$\overrightarrow{BD}$=$\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC}$,
∵$\overrightarrow{BC}=3\overrightarrow{BE}$,∴$\overrightarrow{AE}$=$\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$,
∴$\overrightarrow{BD}•\overrightarrow{AE}$=($\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC}$)($\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$)
=$\overrightarrow{BA}•\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{BA}•\overrightarrow{BC}$+$\frac{1}{2}\overrightarrow{AC}•\overrightarrow{AB}$+$\frac{1}{6}\overrightarrow{AC}•\overrightarrow{BC}$
=-36+$\frac{1}{3}×36×cos60°$+$\frac{1}{2}×6×6×cos60°$+$\frac{1}{6}×6×6×cos60°$
=-36+6+9+3
=-18.
故答案为:-18.
点评 本题考查向量数量积的求法,是中档题,解题时要认真审题,注意平面向量加法法和向量数量积公式的合理运用.
| A. | $\frac{{\sqrt{15}}}{10}a$ | B. | $\sqrt{5}a$ | C. | $\frac{{\sqrt{5}}}{5}a$ | D. | $\sqrt{15}a$ |