题目内容

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(3)=2,f(2015)的值是(  )
A、2016B、2015
C、2014D、2013
考点:函数的值
专题:函数的性质及应用
分析:根据题意,得出f(x+4)=f(x)+4,再求f(2015)的值.
解答: 解:∵f(x+2)≥f(x)+2,
∴f(x+4)≥f(x+2)+2≥f(x)+2+2,
即f(x+4)≥f(x)+4;
又∵f(x+4)≤f(x)+4,
∴f(x+4)=f(x)+4;
∴f(2015)=503×4+f(3)=2012+2=2014.
故选:C.
点评:本题考查了函数的性质与应用的问题,解题的关键是推导出f(x+4)=f(x)+4,是基础题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网