题目内容
已知|
|=4,|
|=4,(2
-3
)•(2
+
)=61
(1)求|
+
|和|
-
|;
(2)若|
|=
,|
|=
,作△ABC,求△ABC的面积.
| a |
| b |
| a |
| b |
| a |
| b |
(1)求|
| a |
| b |
| a |
| b |
(2)若|
| AB |
| a |
| AC |
| b |
分析:(1)由题意可求得
•
=-
,从而可求得|
+
|2与|
-
|2,于是可得|
+
|和|
-
|;
(2)利用向量的夹角公式可求得cos∠BAC=-
,从而可求得sin∠BAC=
,利用三角形的面积公式可求得S△ABC.
| a |
| b |
| 45 |
| 4 |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(2)利用向量的夹角公式可求得cos∠BAC=-
| 45 |
| 64 |
| ||
| 64 |
解答:解:(1)∵|
|=4,|
|=4,由(2
-3
)•(2
+
)=61得:
4|
|2-4
•
-3|
|2=61,
∴
•
=-
,
∴|
+
|2=(
+
)2=|
|2+2
•
+|
|2=
,
∴|
+
|=
,
同理可求得|
-
|=
…6′
(2)cos∠BAC=
=
=-
,
∴sin∠BAC=
,
∴S△ABC=
|
||
|sin∠BAC=
×4×4×
=
(12分)
| a |
| b |
| a |
| b |
| a |
| b |
4|
| a |
| a |
| b |
| b |
∴
| a |
| b |
| 45 |
| 4 |
∴|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| 19 |
| 2 |
∴|
| a |
| b |
| ||
| 2 |
同理可求得|
| a |
| b |
| ||
| 2 |
(2)cos∠BAC=
| ||||
|
|
-
| ||
| 4×4 |
| 45 |
| 64 |
∴sin∠BAC=
| ||
| 64 |
∴S△ABC=
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
| ||
| 64 |
| ||
| 8 |
点评:本题考查平面向量数量积的运算,着重考查向量的模的运算及向量的夹角,考查正弦定理的面积公式,属于中档题.
练习册系列答案
相关题目