题目内容
已知|
|=4,|
|=3,(2
-3
)•(2
+
)=61.
(1)求
与
的夹角为θ;
(2)求|
+
|;
(3)若
=
,
=
,作三角形ABC,求△ABC的面积.
| a |
| b |
| a |
| b |
| a |
| b |
(1)求
| a |
| b |
(2)求|
| a |
| b |
(3)若
| AB |
| a |
| AC |
| b |
分析:(1)由,(2
-3
)•(2
+
)=61,可求得
•
=-6,利用向量夹角公式可得θ;
(2)可先平方转化为向量的数量积.
(3)由(1)知∠BAC=θ=120°,利用三角形面积公式可得答案;
| a |
| b |
| a |
| b |
| a |
| b |
(2)可先平方转化为向量的数量积.
(3)由(1)知∠BAC=θ=120°,利用三角形面积公式可得答案;
解答:解:(1)由(2
-3
)•(2
+
)=61,得4|
|2-4
•
-3|
|2=61,
∵|
|=4,|
|=3,代入上式求得
•
=-6.
∴cos θ=
=
=-
.
又θ∈[0,π],∴θ=120°.
(2)∵|
+
|2=(
+
)2=|
|2+2
•
+|
|2
=42+2×(-6)+32=13,∴|
+
|=
.
(3)由(1)知∠BAC=θ=120°,
|
|=|
|=4,|
|=|
|=3,
∴S△ABC=
|
||
|sin∠BAC
=
×3×4×sin 120°=3
.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
∵|
| a |
| b |
| a |
| b |
∴cos θ=
| ||||
|
|
| -6 |
| 4×3 |
| 1 |
| 2 |
又θ∈[0,π],∴θ=120°.
(2)∵|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
=42+2×(-6)+32=13,∴|
| a |
| b |
| 13 |
(3)由(1)知∠BAC=θ=120°,
|
| AB |
| a |
| AC |
| b |
∴S△ABC=
| 1 |
| 2 |
| AC |
| AB |
=
| 1 |
| 2 |
| 3 |
点评:本题考查向量的模、用数量积求向量夹角、三角形面积公式等知识,属中档题.
练习册系列答案
相关题目