题目内容

6.复数z1=1+icosθ,z2=sinθ-i,则|z1-z2|的最大值为(  )
A.3-2$\sqrt{2}$B.$\sqrt{2}-1$C.3+2$\sqrt{2}$D.$\sqrt{2}+1$

分析 利用复数的运算法则直接化简求|z1-z2|,然后再求它的最大值.

解答 解:∵z1=1+icosθ,z2=sinθ-i,
∴|z1-z2|=|(1+icosθ)-(sinθ-i)|
=|(1-sinθ)+(1+cosθ)i|
=$\sqrt{(1-sinθ)^{2}+(1+cosθ)^{2}}$=$\sqrt{3-2(sinθ-cosθ)}$
=$\sqrt{3-2\sqrt{2}sin(θ-\frac{π}{4})}$$≤\sqrt{3+2\sqrt{2}}$=$\sqrt{2}+1$
则|z1-z2|的最大值为$\sqrt{2}+1$.
故选:D.

点评 本题考查复数的模运算,三角函数的性质.是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网