题目内容

平面内有n(n∈Nn≥2)条直线,其中任何两条不平行,任何三条不过
同一点,证明:交点的个数f(n)=.
见解析
(1)当n=2时,两条直线的交点只有一个,
f(2)=×2×(2-1)=1,
∴当n=2时,命题成立.
(2)假设nk,∈N,且(k>2)时,命题成立,即平面内满足题设的任何k条直线交点个数f(k)=k(k-1),
那么,当nk+1时,任取一条直线l,除l以外其他k条直线交点个数为f(k)=k(k-1),l与其他k条直线交点个数为k,从而k+1条直线共有f(k)+k个交点,
f(k+1)=f(k)+kk(k-1)+kk(k-1+2)=k(k+1)= (k+1)[(k+1)-1],
这表明,当nk+1时,命题成立.
由(1)、(2)可知,对n∈N(n≥2)命题都成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网