题目内容
不等式
>0的解集为 .
| x-1 |
| x |
考点:其他不等式的解法
专题:不等式的解法及应用
分析:将原不等式转化为
或
,分别解之即可.
|
|
解答:
解:∵
>0,
∴
或
,
解得:x>1或x<0,
∴原不等式的解集为{x|x>1或x<0}.
故答案为:{x|x>1或x<0}.
| x-1 |
| x |
∴
|
|
解得:x>1或x<0,
∴原不等式的解集为{x|x>1或x<0}.
故答案为:{x|x>1或x<0}.
点评:本题考查分式不等式的解法,等价转化为相应的不等式组是关键,考查转化思想.
练习册系列答案
相关题目
在△ABC中,已知a=
,b=2,A=30°,则角B=( )
| 2 |
| A、45° |
| B、60° |
| C、45°或135° |
| D、60°或120° |
函数f(x)=
的定义域是( )
| x2-4x+3 |
| A、x∈R |
| B、x∈(0,3) |
| C、x∈(1,3) |
| D、x∈(-∞,1]∪[3,+∞) |
已知函数f(x)=ex-
(x<0)与g(x)=ln(x+a)图象上存在关于y轴对称的点,则实数a的取值范围是( )
| 1 |
| 2 |
A、(-∞,
| ||||||
B、(-∞,
| ||||||
C、(-
| ||||||
D、(-
|