题目内容
已知等差数列{an}和{bn}的前n项和分别为Sn,Tn,且
=
对任意n∈N*恒成立,则
的值为 .
| Sn |
| Tn |
| 2n |
| n+2 |
| a10 |
| b10 |
考点:数列的求和
专题:等差数列与等比数列
分析:
=
=
=
,由此能求出结果.
| a10 |
| b10 |
| 2a10 |
| 2b10 |
| ||
|
| S19 |
| T19 |
解答:
解:∵等差数列{an}和{bn}的前n项和分别为Sn,Tn,
且
=
对任意n∈N*恒成立,
∴
=
=
=
=
=
=
.
故答案为:
.
且
| Sn |
| Tn |
| 2n |
| n+2 |
∴
| a10 |
| b10 |
| 2a10 |
| 2b10 |
| a1+a19 |
| b1+b19 |
=
| ||
|
=
| S19 |
| T19 |
| 2×19 |
| 19+2 |
| 38 |
| 21 |
故答案为:
| 38 |
| 21 |
点评:本题考查两个数列的第10项的比值的求法,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.
练习册系列答案
相关题目