题目内容
曲线f(x)=
在点x=1处的切线方程为______.
| lnx |
| x |
f′(x)=
,k=f′(1)=1,
∴l:y-0=x-1?y=x-1,
故答案为:y=x-1.
| 1-lnx |
| x2 |
∴l:y-0=x-1?y=x-1,
故答案为:y=x-1.
练习册系列答案
相关题目
曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )
| A、3x-y+1=0 | B、3x-y-1=0 | C、3x+y-1=0 | D、3x-y-5=0 |
点(1,1)到曲线f(x)=lnx在点x=1处的切线的距离为( )
| A、2 | ||||
| B、1 | ||||
C、
| ||||
D、
|