题目内容

2.双曲线3x2-y2=1的渐近线方程是(  )
A.y=±3xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}$xD.$y=±\frac{{\sqrt{3}}}{3}x$

分析 将双曲线的方程化为标准方程,由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为y=±$\frac{b}{a}$x,即可得到所求渐近线方程.

解答 解:双曲线3x2-y2=1即为
$\frac{{x}^{2}}{\frac{1}{3}}$-y2=1,
由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为:
y=±$\frac{b}{a}$x,
可得所求双曲线的渐近线方程为y=±$\sqrt{3}$x.
故选:C.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线方程和渐近线方程的关系,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网