题目内容

12.双曲线${y^2}-\frac{x^2}{m}=1$的离心率e∈(1,2),则m的取值范围是(0,3).

分析 求得双曲线的a,b,c,e,解不等式即可得到所求m的范围.

解答 解:双曲线${y^2}-\frac{x^2}{m}=1$(m>0),
可得a=1,b=$\sqrt{m}$,c=$\sqrt{1+m}$,
即有e=$\frac{c}{a}$=$\sqrt{1+m}$∈(1,2),
解得0<m<3.
故答案为:(0,3).

点评 本题考查双曲线的参数的范围,注意运用双曲线的离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网