题目内容
如图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是________.
99°
已知f(n)=1+++…+(n∈N*),经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>.则有________________.
如图,在△ABC中,∠A=90°,正方形DEFG的边长是6cm,且四个顶点都在△ABC的各边上,CE=3 cm,则BC的长为( )
A.12cm B.21cm
C.18cm D.15cm
(2013·广州联考)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB于D,且AD=5DB,设∠OCD=θ,则cos2θ=________.
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A、B,C、D,弦AD和BC交于点Q,割线PEF经过点Q交圆O于点E、F,点M在EF上,且∠BAD=∠BMF.
(1)求证:PA·PB=PM·PQ;
(2)求证:∠BMD=∠BOD.
设极坐标系的极点与平面直角坐标系的原点重合,极轴为x轴正半轴,则直线(t为参数)被圆ρ=3截得的弦长为( )
A. B.
C. D.
已知曲线C:(θ为参数)和直线l:(t为参数,b为实数),若曲线C上恰有3个点到直线l的距离等于1,则b=( )
A. B.-
C.0 D.±
已知直线C1:(t为参数),圆C2:(θ为参数).
(1)当α=时,求C1与C2的交点坐标;
(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
设a=+2,b=2+,则a、b的大小关系为________.