题目内容
12.在四面体S-ABC中,若$SA=CB=\sqrt{5}$,$SB=AC=\sqrt{10}$,$SC=AB=\sqrt{13}$,则这个四面体的外接球的表面积为14π.分析 构造长方体,使得面上的对角线长分别为$\sqrt{13}$,$\sqrt{10}$,$\sqrt{5}$,则长方体的对角线长等于三棱锥S-ABC外接球的直径,即可求出三棱锥S-ABC外接球的表面积.
解答 解:∵三棱锥S-ABC中,$SA=CB=\sqrt{5}$,$SB=AC=\sqrt{10}$,$SC=AB=\sqrt{13}$,
∴构造长方体,使得面上的对角线长分别为$\sqrt{13}$,$\sqrt{10}$,$\sqrt{5}$,
则长方体的对角线长等于三棱锥S-ABC外接球的直径.
设长方体的棱长分别为x,y,z,则x2+y2=13,y2+z2=10,x2+z2=5,
∴x2+y2+z2=14
∴三棱锥S-ABC外接球的直径为$\sqrt{14}$,
∴三棱锥S-ABC外接球的表面积为4$π•(\frac{\sqrt{14}}{2})^{2}$=14π.
故答案为14π.
点评 本题考查球内接多面体,考查学生的计算能力,构造长方体,利用长方体的对角线长等于四面体外接球的直径是关键.
练习册系列答案
相关题目
2.已知:方程$\sqrt{1-\frac{{x}^{2}}{4}}$=kx+2有两个不等实根,则k的取值范围为( )
| A. | [-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1] | B. | (-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1) | C. | (-∞,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
20.当α∈($\frac{π}{2}$,$\frac{3π}{4}$)时,方程x2sinα-y2cosα=1表示的曲线是( )
| A. | 焦点在x轴上的椭圆 | B. | 焦点在y轴上的椭圆 | ||
| C. | 焦点在x轴上的双曲线 | D. | 焦点在y轴上的双曲线 |