题目内容
4.已知点A(-2,0),B(2,0),动点P到A的距离为6,线段PB的垂直平分线l交线段PA于点M,则M的轨迹方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.分析 利用垂直平分线转换线段的关系得到|MA|+|MB|=|MA|+|MP|=|AP|=6,据椭圆的定义即可得到动点M的轨迹方程.
解答 解:∵线段PB的垂直平分线l交线段PA于点M,
∴|MA|+|MB|=|MA|+|MP|=|AP|=6,
即M点的轨迹为以A、B为焦点的椭圆,2a=6,c=2,
∴b=$\sqrt{5}$
∴M点的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.
故答案为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.
点评 定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.
练习册系列答案
相关题目
15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,4),且k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则k=( )
| A. | $\frac{10}{3}$ | B. | -$\frac{10}{3}$ | C. | -$\frac{20}{3}$ | D. | $\frac{20}{3}$ |
12.下列关于不等式的结论中正确的是( )
| A. | 若a>b,则ac2>bc2 | B. | 若a>b,则a2>b2 | ||
| C. | 若a<b<0,则a2<ab<b2 | D. | 若a<b<0,则$\frac{a}{b}$>$\frac{b}{a}$ |