题目内容
11.椭圆上的点A(-3,0)关于直线y=x和y=-x的对称点分别为椭圆的焦点F1和F2,P为椭圆上任意一点,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的最大值为18.分析 由对称性得到椭圆焦点坐标,可知椭圆是焦点在y轴上的椭圆,求出离心率,代入焦半径公式,可得|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=$18-\frac{1}{2}{{y}_{0}}^{2}$,结合P点纵坐标的范围得答案.
解答 解:点A(-3,0)关于直线y=x和y=-x的对称点分别为(0,-3),(0,3),
即F1(0,-3),F2(0,3),
∴b=c=3,则a2=b2+c2=18,a=$3\sqrt{2}$.
∴椭圆方程为$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{9}=1$.
设P(x0,y0),则-3≤y0≤3.
∴|$\overrightarrow{P{F}_{1}}$|=a+ey0=3$\sqrt{2}+\frac{\sqrt{2}}{2}{y}_{0}$,|$\overrightarrow{P{F}_{2}}$|=a-ey0=$3\sqrt{2}-\frac{\sqrt{2}}{2}{y}_{0}$.
∴|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=(3$\sqrt{2}+\frac{\sqrt{2}}{2}{y}_{0}$)($3\sqrt{2}-\frac{\sqrt{2}}{2}{y}_{0}$)=$18-\frac{1}{2}{{y}_{0}}^{2}$,
当y0=0时,|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|有最大值为18.
故答案为:18.
点评 本题考查椭圆的简单性质,训练了椭圆焦半径公式的应用,属中档题.
| A. | (-∞,1] | B. | $[{\frac{1}{5},\frac{1}{3}})$ | C. | $({-∞,\frac{1}{3}})$ | D. | $[{\frac{1}{5},1}]$ |
| A. | (-∞,-2] | B. | [2,+∞) | C. | [-2,2] | D. | (-2,2) |