题目内容

6.求函数y=$\frac{tanx}{1+ta{n}^{2}x}$的值域.

分析 令t=tanx∈R.f(t)=$\frac{t}{1+{t}^{2}}$,当t=0时,f(0)=0;对于t分类讨论,利用基本不等式的性质即可得出.

解答 解:令t=tanx∈R.
∴f(t)=$\frac{t}{1+{t}^{2}}$,
当t=0时,f(0)=0;
当t>0时,0<f(t)=$\frac{1}{t+\frac{1}{t}}$$≤\frac{1}{2}$,当且仅当t=1时取等号.
同理可得:t<0时,0>f(t)≥$-\frac{1}{2}$
综上可得:f(t)∈$[-\frac{1}{2},\frac{1}{2}]$.
∴函数y=$\frac{tanx}{1+ta{n}^{2}x}$的值域是$[-\frac{1}{2},\frac{1}{2}]$.

点评 本题考查了基本不等式的性质、“换元法”、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网