题目内容
12.已知直线mx+4y-2=0与2x-5y+1=0互相垂直,则m的值为( )| A. | 10 | B. | 20 | C. | 0 | D. | -4 |
分析 由直线的垂直关系可得2m-20=0,解方程可得m的值.
解答 解:∵直线mx+4y-2=0与2x-5y+1=0垂直,
∴2m-20=0,解得m=10,
故选:A
点评 本题考查直线的一般式方程和垂直关系,属基础题.
练习册系列答案
相关题目
7.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数f(x)=3sin2x的值不小于0的概率为( )
| A. | $\frac{6}{11}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{7}{12}$ |
17.如图在空间四边形OABC中,点M在OA上,且OM=2MA,N为BC中点,则$\overrightarrow{MN}$等于( )
| A. | $\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$ | B. | $-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$ | C. | $\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$ | D. | $\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$ |
2.
如图所示的坐标平面的可行域内(包括边界),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{3}{5}$ | C. | 4 | D. | $\frac{5}{3}$ |