题目内容
13.已知正数a,b,c满足约束条件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}$且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}$,则$\frac{2c-b}{a}$的最大值为$\frac{9}{2}$.分析 化简可得$\left\{\begin{array}{l}{1≤\frac{b}{a}+\frac{c}{a}}\\{1≥\frac{1}{3}(\frac{b}{a}+\frac{c}{a})}\end{array}\right.$且$\left\{\begin{array}{l}{\frac{b}{a}≤1+\frac{c}{a}}\\{\frac{b}{a}≥\frac{c}{a}-2}\end{array}\right.$,令$\frac{b}{a}$=x,$\frac{c}{a}$=y,从而可得z=$\frac{2c-b}{a}$=2y-x,$\left\{\begin{array}{l}{1≤x+y≤3}\\{-2≤x-y≤1}\end{array}\right.$,从而作图求解即可.
解答 解:∵a>0,b>0,c>0,$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}$,
∴$\left\{\begin{array}{l}{1≤\frac{b}{a}+\frac{c}{a}}\\{1≥\frac{1}{3}(\frac{b}{a}+\frac{c}{a})}\end{array}\right.$,
∵$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}$,
∴$\left\{\begin{array}{l}{\frac{b}{a}≤1+\frac{c}{a}}\\{\frac{b}{a}≥\frac{c}{a}-2}\end{array}\right.$,
令$\frac{b}{a}$=x,$\frac{c}{a}$=y,(x>0,y>0),
则z=$\frac{2c-b}{a}$=2y-x,
$\left\{\begin{array}{l}{\frac{1}{3}(x+y)≤1≤x+y}\\{y-2≤x≤1+y}\end{array}\right.$,
则$\left\{\begin{array}{l}{1≤x+y≤3}\\{-2≤x-y≤1}\end{array}\right.$,
作平面区域如下,
,
当过点B时有最大值,
由$\left\{\begin{array}{l}{x=y-2}\\{x=3-y}\end{array}\right.$解得,x=$\frac{1}{2}$,y=$\frac{5}{2}$,
故$\frac{2c-b}{a}$=2y-x=5-$\frac{1}{2}$=$\frac{9}{2}$,
故答案为$\frac{9}{2}$.
点评 本题考查了数形结合的思想应用及转化的思想应用,属于中档题.
| 物理 | 化学 | 生命科学 | 政治 | 历史 | 地理 | |
| 甲校 | 35 | 20 | 15 | 7 | 8 | 15 |
| 乙校 | 30 | 14 | 16 | 11 | 14 | 15 |
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.