题目内容

13.已知正数a,b,c满足约束条件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}$且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}$,则$\frac{2c-b}{a}$的最大值为$\frac{9}{2}$.

分析 化简可得$\left\{\begin{array}{l}{1≤\frac{b}{a}+\frac{c}{a}}\\{1≥\frac{1}{3}(\frac{b}{a}+\frac{c}{a})}\end{array}\right.$且$\left\{\begin{array}{l}{\frac{b}{a}≤1+\frac{c}{a}}\\{\frac{b}{a}≥\frac{c}{a}-2}\end{array}\right.$,令$\frac{b}{a}$=x,$\frac{c}{a}$=y,从而可得z=$\frac{2c-b}{a}$=2y-x,$\left\{\begin{array}{l}{1≤x+y≤3}\\{-2≤x-y≤1}\end{array}\right.$,从而作图求解即可.

解答 解:∵a>0,b>0,c>0,$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}$,
∴$\left\{\begin{array}{l}{1≤\frac{b}{a}+\frac{c}{a}}\\{1≥\frac{1}{3}(\frac{b}{a}+\frac{c}{a})}\end{array}\right.$,
∵$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}$,
∴$\left\{\begin{array}{l}{\frac{b}{a}≤1+\frac{c}{a}}\\{\frac{b}{a}≥\frac{c}{a}-2}\end{array}\right.$,
令$\frac{b}{a}$=x,$\frac{c}{a}$=y,(x>0,y>0),
则z=$\frac{2c-b}{a}$=2y-x,
$\left\{\begin{array}{l}{\frac{1}{3}(x+y)≤1≤x+y}\\{y-2≤x≤1+y}\end{array}\right.$,
则$\left\{\begin{array}{l}{1≤x+y≤3}\\{-2≤x-y≤1}\end{array}\right.$,
作平面区域如下,

当过点B时有最大值,
由$\left\{\begin{array}{l}{x=y-2}\\{x=3-y}\end{array}\right.$解得,x=$\frac{1}{2}$,y=$\frac{5}{2}$,
故$\frac{2c-b}{a}$=2y-x=5-$\frac{1}{2}$=$\frac{9}{2}$,
故答案为$\frac{9}{2}$.

点评 本题考查了数形结合的思想应用及转化的思想应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网