题目内容
5.证明函数u=$\frac{1}{r}$,满足方程$\frac{{∂}^{2}u}{{∂x}^{2}}+\frac{{∂}^{2}u}{{ay}^{2}}+\frac{{∂}^{2}u}{{az}^{2}}=0$,其中r=$\sqrt{{x}^{2}{+y}^{2}{+z}^{2}}$.分析 运用二阶偏导数的运算法则,先求一阶偏导数,再由二阶偏导数,化简整理即可得证.
解答 证明:由u(x,y,z)=$\frac{1}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}$,
可得$\frac{∂u}{∂x}$=-$\frac{x}{({x}^{2}+{{y}^{2}+z}^{2})^{\frac{3}{2}}}$,$\frac{∂^2u}{∂x^2}$=$\frac{2{x}^{2}-{y}^{2}-{z}^{2}}{({x}^{2}+{{y}^{2}+z}^{2})^{\frac{5}{2}}}$,
同理可得,$\frac{∂^2u}{∂y^2}$=$\frac{2{y}^{2}-{x}^{2}-{z}^{2}}{({x}^{2}+{y}^{2}+{z}^{2})^{\frac{5}{2}}}$,$\frac{∂^2u}{∂z^2}$=$\frac{2{z}^{2}-{x}^{2}-{y}^{2}}{(x+{y}^{2}+{z}^{2})^{\frac{5}{2}}}$,
即有$\frac{{∂}^{2}u}{{∂x}^{2}}+\frac{{∂}^{2}u}{{ay}^{2}}+\frac{{∂}^{2}u}{{az}^{2}}=0$.
点评 本题考查二阶偏导数的运算法则,考查运算能力,属于基础题.
练习册系列答案
相关题目
10.若方程$\frac{{x}^{2}}{k-4}$-$\frac{{y}^{2}}{k+4}$=1表示双曲线,则它的焦点坐标为( )
| A. | ($\sqrt{2k}$,0),(-$\sqrt{2k}$,0) | B. | (0,$\sqrt{-2k}$),(0,$-\sqrt{2k}$) | C. | ($\sqrt{2|k|}$,0),(-$\sqrt{2|k|}$,0) | D. | 根据k的取值而定 |