题目内容
设数列{an}各项均为正数,且满足an+1=an-an2.
(Ⅰ)求证:对一切n≥2,都有an≤
;
(Ⅱ)已知前n项和为S,求证:对一切n≥2,都有S2n-Sn-1<ln2.
(Ⅰ)求证:对一切n≥2,都有an≤
| 1 |
| n+2 |
(Ⅱ)已知前n项和为S,求证:对一切n≥2,都有S2n-Sn-1<ln2.
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得0<a1<1,当n=2时,a3=a2-a22=
-(a1-
)2≤
,不等式成立,假设当n=k(k≥2)时,不等式成立,由已知推导出不等式也成立,由数学归纳法知,对一切n≥2,都有an≤
.
(Ⅱ)设f(x)=ln(x+1)-
,x>0则f′(x)=
-
=
>0,f(x)在(0,+∞)上是增函数,ln(x+1)>
,令x=
,代入上式,得
<ln(n+2)-ln(n+1),由此能证明对一切n≥2,都有S2n-Sn-1<ln2.
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n+2 |
(Ⅱ)设f(x)=ln(x+1)-
| x |
| x+1 |
| 1 |
| x+1 |
| 1 |
| (x+1)2 |
| x |
| (x+1)2 |
| x |
| x+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:
证明:(Ⅰ)∵数列{an}各项均为正数,且满足an+1=an-an2,
∴a2=a1-a12>0,解得0<a1<1,
当n=2时,a3=a2-a22=
-(a1-
)2≤
,不等式成立,
假设当n=k(k≥2)时,不等式成立,即ak≤
,
则当n=k+1时,
ak+1=ak-ak2=
-(ak-
)2
≤
-(
-
)2=
<
=
,
∴当n=k+1时,不等式也成立,
由数学归纳法知,对一切n≥2,都有an≤
.
(Ⅱ)设f(x)=ln(x+1)-
,x>0
则f′(x)=
-
=
>0,
∴f(x)在(0,+∞)上是增函数,
则f(x)>f(0)=0,即ln(x+1)>
,
令x=
,代入上式,得
<ln(n+2)-ln(n+1),
故对一切n≥2,S2n-Sn-1=an+an+1+an+2+…+a2n
≤
+
+
+…+
<ln(n+2)-ln(n+1)+ln(n+3)-ln(n+2)+…+ln(2n+2)-ln(2n+1)
=ln(2n+2)-ln(n+1)=ln2.
∴对一切n≥2,都有S2n-Sn-1<ln2.
∴a2=a1-a12>0,解得0<a1<1,
当n=2时,a3=a2-a22=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
假设当n=k(k≥2)时,不等式成立,即ak≤
| 1 |
| k+2 |
则当n=k+1时,
ak+1=ak-ak2=
| 1 |
| 4 |
| 1 |
| 2 |
≤
| 1 |
| 4 |
| 1 |
| k+2 |
| 1 |
| 2 |
| k+1 |
| (k+2)2 |
<
| k+1 |
| (k+1)(k+3) |
| 1 |
| (k+2)+1 |
∴当n=k+1时,不等式也成立,
由数学归纳法知,对一切n≥2,都有an≤
| 1 |
| n+2 |
(Ⅱ)设f(x)=ln(x+1)-
| x |
| x+1 |
则f′(x)=
| 1 |
| x+1 |
| 1 |
| (x+1)2 |
| x |
| (x+1)2 |
∴f(x)在(0,+∞)上是增函数,
则f(x)>f(0)=0,即ln(x+1)>
| x |
| x+1 |
令x=
| 1 |
| n+1 |
| 1 |
| n+2 |
故对一切n≥2,S2n-Sn-1=an+an+1+an+2+…+a2n
≤
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| n+4 |
| 1 |
| 2n+2 |
<ln(n+2)-ln(n+1)+ln(n+3)-ln(n+2)+…+ln(2n+2)-ln(2n+1)
=ln(2n+2)-ln(n+1)=ln2.
∴对一切n≥2,都有S2n-Sn-1<ln2.
点评:本题考查不等式的证明,解题时要注意导数性质、构造法、数学归纳法的合理运用.
练习册系列答案
相关题目
已知cosα<0,tan2α>0,则在(0,π)内,α的取值范围是( )
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
D、(
|