题目内容

2.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5)的值;
(Ⅱ)利用合情推理的“归纳推理思想”,归纳出f(n)与f(n-1)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

分析 先分别观察给出正方体的个数为:1,1+4,1+4+8,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.

解答 解:(Ⅰ)f(5)=41…(4分)
(Ⅱ)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4
由以上规律,所以得出f(n)-f(n-1)=4(n-1)…(8分)
f(n)-f(n-1)=4(n-1)
f(n-1)-f(n-2)=4(n-2)
…f(3)-f(2)=8=4×2
f(2)-f(1)=4=4×1
相加得:f(n)-f(1)=4[1+2+3+…+(n-2)+(n-1)]=$4×\frac{n(n-1)}{2}=2{n^2}-2n$,
∴f(n)=2n2-2n+1…(12分)

点评 本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网