ÌâÄ¿ÄÚÈÝ
12£®| A£® | ÈôÍùÈÝÆ÷ÄÚÔÙ×¢ÈëaÉýË®£¬ÔòÈÝÆ÷Ç¡ºÃÄÜ×°Âú | |
| B£® | ½«ÈÝÆ÷²àÃæË®Æ½·ÅÖÃʱ£¬Ë®ÃæÒ²Ç¡ºÃ¹ýµãP | |
| C£® | ÈÎÒâ°Ú·Å¸ÃÈÝÆ÷£¬µ±Ë®Ã澲ֹʱ£¬Ë®Ã涼ǡºÃ¾¹ýµãP | |
| D£® | ÕýËÄÀâ×¶µÄ¸ßµÈÓÚÕýËÄÀâÖù¸ßµÄÒ»°ë |
·ÖÎö ¸ù¾ÝÌâÒ⣬Éèͼ1ÖÐË®µÄ¸ß¶ÈΪh2£¬¼¸ºÎÌåµÄ¸ßΪh1£¬µ×ÃæÕý·½Ðεı߳¤Îªb£¬ÀûÓÃË®µÄÌå»ý£¬µÃ³öh1Óëh2µÄ¹ØÏµ£¬´Ó¶øÅжÏD´íÎó£¬A¡¢B¡¢CÕýÈ·£®
½â´ð ½â£ºÉèͼ1ÖÐË®µÄ¸ß¶Èh2£¬¼¸ºÎÌåµÄ¸ßΪh1£¬µ×ÃæÕý·½Ðεı߳¤Îªb£»
Ôòͼ2ÖÐË®µÄÌå»ýΪb2h1-b2h2=b2£¨h1-h2£©£¬
¼´$\frac{2}{3}$b2h2=b2£¨h1-h2£©£¬½âµÃh1=$\frac{5}{3}$h2£¬
ËùÒÔÕýËÄÀâ×¶µÄ¸ßµÈÓÚÕýËÄÀâÖù¸ßµÄÒ»°ëÊÇ´íÎóµÄ£¬¼´D´íÎó£®
¶ÔÓÚA£¬ÍùÈÝÆ÷ÄÚÔÙ×¢ÈëaÉýË®£¬Ë®Ã潫Éý¸ß$\frac{2}{3}$h2£¬Ôòh2+$\frac{2}{3}$h2=$\frac{5}{3}$h2=h1£¬ÈÝÆ÷Ç¡ºÃÄÜ×°Âú£¬AÕýÈ·£»
¶ÔÓÚB£¬µ±ÈÝÆ÷²àÃæË®Æ½·ÅÖÃʱ£¬PµãÔÚ³¤·½ÌåÖнØÃæÉÏ£¬Õ¼ÈÝÆ÷ÄÚ¿Õ¼äµÄÒ»°ë£¬
ËùÒÔË®ÃæÒ²Ç¡ºÃ¾¹ýPµã£¬BÕýÈ·£»
¶ÔÓÚC£¬ÈÎÒâ°Ú·Å¸ÃÈÝÆ÷£¬µ±Ë®Ã澲ֹʱ£¬PµãÔÚ³¤·½ÌåÖнØÃæÉÏ£¬Ê¼ÖÕÕ¼ÈÝÆ÷ÄÚ¿Õ¼äµÄÒ»°ë£¬
ËùÒÔË®Ãæ¶¼Ç¡ºÃ¾¹ýµãP£¬CÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²é¼¸ºÎÄ£Ð͵ÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˿ռ伸ºÎÌåµÄÌå»ýÓ¦ÓÃÎÊÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¿Õ¼ä˼άÄÜÁ¦µÄÓ¦Óã¬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| A£® | 0¸ö | B£® | 1¸ö | C£® | 2¸ö | D£® | ÎÞÊý¸ö |
| A£® | y=$¡À\sqrt{2}$x | B£® | y=¡À$\frac{\sqrt{7}}{3}$x | C£® | y=¡À$\frac{4}{3}$x | D£® | y=¡À$\sqrt{6}$x |
| A£® | {3} | B£® | {2£¬3} | C£® | {2} | D£® | {2£¬3£¬4} |
| A£® | 1 | B£® | -1 | C£® | -2 | D£® | 2 |
| A£® | 8x+6y+13=0 | B£® | 6x-8y+13=0 | C£® | 4x+3y+13=0 | D£® | 3x+4y+26=0 |