题目内容

15.|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,点D在∠CAB内,且∠DAB=30°,设$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),则$\frac{λ}{μ}$等于(  )
A.3B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

分析 $\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=30°,设D点坐标为($\sqrt{3}$y,y),由平面向量坐标表示,可求出λ和μ.

解答 解:由$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,
以A为原点,以$\overrightarrow{AB}$所在的直线为x轴正半轴,以$\overrightarrow{AC}$所在的直线为y轴的正半轴,
则B点坐标为(1,0),C点坐标为(0,2),
∠DAB=30°设D点坐标为($\sqrt{3}$y,y),
$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),
即($\sqrt{3}$y,y)=(λ,2μ),
$λ=\sqrt{3}y$,$μ=\frac{y}{2}$,
$\frac{λ}{μ}$=2$\sqrt{3}$.
故选:D.

点评 本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网