题目内容

3.在直角坐标系xoy中,直线l:$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$,在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}(0≤θ<2π)$,若直线与y轴正半轴交于点M,与曲线C交于A、B两点,其中点A在第一象限.
(Ⅰ)求曲线C的直角坐标方程及点M对应的参数tM(用α表示);
(Ⅱ)设曲线C的左焦点为F1,若|F1B|=|AM|,求直线l的倾斜角α的值.

分析 (Ⅰ)由${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,得ρ2+2ρ2sin2θ=3,利用x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出曲线C的直角坐标方程;由题意可知点M的横坐标为0,代入$x=-\sqrt{2}+tcosα=0$,由此能求出点M对应的参数tM
(Ⅱ)直线过定点${F_1}(-\sqrt{2},0)$,将$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$代入$\frac{x^2}{3}+{y^2}=1$,得$(1+2{sin^2}α){t^2}-2\sqrt{2}cosαt-1=0$,由此利用|F1B|=|AM|,能求出直线l的倾斜角α的值.

解答 解:(Ⅰ)由${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$得ρ2+2ρ2sin2θ=3,
∵x=ρcosθ,y=ρsinθ,ρ2=x2+y2
∴曲线C的直角坐标方程为$\frac{x^2}{3}+{y^2}=1$.…(2分),
又由题意可知点M的横坐标为0,
代入$x=-\sqrt{2}+tcosα=0$,∴${t_M}=\frac{{\sqrt{2}}}{cosα}$…(4分)
(Ⅱ)由(Ⅰ)知,直线过定点${F_1}(-\sqrt{2},0)$,
将$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$代入$\frac{x^2}{3}+{y^2}=1$,
化简可得$(1+2{sin^2}α){t^2}-2\sqrt{2}cosαt-1=0$,
设A、B对应的参数分别为t1,t2
∵|F1B|=|AM|,∴|t1+t2|=|tM|,sinα=$±\frac{1}{2}$,
∴0$≤α<\frac{π}{2}$,∴α=$\frac{π}{6}$.…(10分)

点评 本题考查曲线的直角坐标方程的求法,考查角的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网