ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2£¬-1£©£¬$\overrightarrow{b}$=£¨1£¬x£©£®£¨¢ñ£©Èô$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬Çó|$\overrightarrow{b}$|µÄÖµ£»
£¨¢ò£©Èô$\overrightarrow{a}$+2$\overrightarrow{b}$=£¨4£¬-7£©£¬ÇóÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óС£®
·ÖÎö £¨I£©ÓÉÏòÁ¿µÄ¼Ó·¨ºÍÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¿ÉµÃx=7£¬ÔÙÓÉÏòÁ¿µÄÄ£µÄ¹«Ê½¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨II£©ÔËÓÃÏòÁ¿µÄ¼Ó·¨ÔËË㣬¿ÉµÃx=-3£¬ÔÙÓÉÏòÁ¿µÄ¼Ð½Ç¹«Ê½cos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó¼Ð½Ç£®
½â´ð ½â£º£¨I£©ÒÀÌâÒâ¿ÉµÃ£¬$\overrightarrow{a}$+$\overrightarrow{b}$=£¨3£¬-1+x£©£¬
ÓÉ$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬¿ÉµÃ£¬$\overrightarrow{a}$•£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©=0£¬
¼´6+1-x=0£¬
½âµÃx=7£¬¼´$\overrightarrow{b}$=£¨1£¬7£©£¬
ËùÒÔ$|b|=\sqrt{50}=5\sqrt{2}$£»
£¨II£©ÒÀÌâÒâ$\overrightarrow{a}$+2$\overrightarrow{b}$=£¨4£¬2x-1£©=£¨4£¬-7£©£¬
¿ÉµÃx=-3£¬¼´$\overrightarrow{b}$=£¨1£¬-3£©£¬$\frac{2+3}{\sqrt{5}•\sqrt{10}}$
ËùÒÔcos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2+3}{\sqrt{5}•\sqrt{10}}$=$\frac{\sqrt{2}}{2}$£¬
ÒòΪ£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾¡Ê[0£¬¦Ð]£¬
ËùÒÔ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç´óСÊÇ$\frac{¦Ð}{4}$£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÔËË㣬Ö÷Òª¿¼²éÏòÁ¿µÄÄ£µÄÇ󷨺ͼнǵÄÇ󷨣¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ¢Ù¢Ü | B£® | ¢Ú¢Ü | C£® | ¢Ú¢Û | D£® | ¢Ù¢Û |
| A£® | $\frac{3-4\sqrt{3}}{10}$ | B£® | $\frac{3+4\sqrt{3}}{10}$ | C£® | $\frac{4-3\sqrt{3}}{10}$ | D£® | $\frac{4+3\sqrt{3}}{10}$ |