题目内容

已知O是坐标原点,点A(-2,1),若点M(x,y)为平面区域
x+y≥2
x≤1
y≤2
上的一个动点,则
OA
OM
的取值范围是(  )
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=
OA
OM
,求出z的表达式,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
z=
OA
OM

∵A(-2,1),M(x,y),
∴z=
OA
OM
=-2x+y,
即y=2x+z,
平移直线y=2x+z,由图象可知当y=2x+z,经过点A(1,1)时,直线截距最小,此时z最小为z=-2+1=-1.
经过点B(0,2)时,直线截距最大,此时z最大.此时z=2,
即-1≤z≤2,
故选:B.
点评:本题主要考查线性规划的应用,根据向量数量积的坐标公式求出z的表达式,利用数形结合是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网