题目内容

4.若14400所有正因数从小到大构成的数列d1,d2,…,dn,则Sn=$\frac{1}{{d}_{1}}$+$\frac{1}{{d}_{2}}$+…+$\frac{1}{{d}_{n}}$=$\frac{51181}{14400}$.

分析 由于14400=26•32•52,即有正因数的个数为7×3×3=63,分别写出所有的正因数,再由因式分解和等比数列的求和公式,即可得到所求和.

解答 解:由于14400=26•32•52
即有正因数的个数为7×3×3=63,
则S63=(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{64}$)+($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
+$\frac{1}{2}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)+$\frac{1}{4}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
+…+$\frac{1}{64}$($\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{25}$+$\frac{1}{15}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
=(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{64}$)(1+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{9}$+$\frac{1}{15}$+$\frac{1}{25}$+$\frac{1}{45}$+$\frac{1}{75}$+$\frac{1}{225}$)
=$\frac{1-\frac{1}{{2}^{7}}}{1-\frac{1}{2}}$•$\frac{403}{225}$=$\frac{51181}{14400}$.
故答案为:$\frac{51181}{14400}$.

点评 本题考查自然数的正因数的求法,以及等比数列的求和公式,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网