题目内容

函数f(x)=ax-1+logax,(a>0,a≠1)在区间
1
2
上的最大值和最小值的和为a,则实数a的值为
 
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:由已知可知,函数y=ax-1 和y=logax有相同的单调性,通过分0<a<1和a>1两种情况讨论f(x)的单调性,分别求出其最大(小)值,列出关于a的方程求解.
解答: 解:①当a>1时,函数y=ax-1 和y=logax在[1,2]上都是增函数,
∴f(x)=ax-1+logax在[1,2]上递增,
∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,
∴loga2=-1,得a=
1
2
(舍去);
②当0<a<1时,函数y=ax-1 和y=logax在[1,2]上都是减函数,
∴f(x)=ax-1+logax在[1,2]上递减,
∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,
∴loga2=-1,得a=
1
2

综上,a的值为
1
2

故答案为:
1
2
点评:求函数的最值问题,一般利用函数的单调性来求;而对于指对函数研究其单调性时,要分底数a>1或0<a<1进行讨论;同时本题还要注意根据a的范围去掉绝对值符号达到化简的目的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网