题目内容
已知,若,则的值为( )
A. B.2 C. D.
若变量满足约束条件,则的最大值等于( )
A. B. C. D.
若函数在区间上单调递增,则实数的取值范围是 .
(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.
(1)根据该图数据在答题卷中完成频率分布表,并在图中补全这些数据的频率分布直方图;
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天
到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?
对任意的、,定义:=;=.则下列各式中
恒成立的个数为( )
①
②
③
④
A.1 B.2 C.3 D.4
(本小题满分14分)在平面直角坐标系中,的两个顶点的坐标分别是,点是的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点.若以为直径的圆过点时,试判断直线是否过定点?若过,请求出定点坐标,不过,说明理由.
已知抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,若为边长是的等边三角形,则此抛物线方程为 .
(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在局以内(含局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求的分布列和期望.
设集合,,则 .