题目内容

17.已知函数f(x)=sin2x+sin(2x-$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)将f(x)的图象沿x轴向左平移m(m>0)个单位,所得函数g(x)的图象关于直线x=$\frac{π}{8}$对称,求m的最小值及m最小时g(x)在$[0,\frac{π}{4}]$上的值域.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.
(2)利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的定义域和值域,求得g(x)在$[0,\frac{π}{4}]$上的值域.

解答 解:(1)函数$f(x)=sin2x+sin(2x-\frac{π}{3})$=sin2x+sin2xcos$\frac{π}{3}$-cos2xsin$\frac{π}{3}$
=$\frac{3}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=$\sqrt{3}$sin(2x-$\frac{π}{6}$),
∴f(x)的最小正周期为$\frac{2π}{2}$=π.
(2)将f(x)的图象沿x轴向左平移m(m>0)个单位,所得函数g(x)=$\sqrt{3}$sin(2x+2m-$\frac{π}{6}$)的图象,
根据所得图象关于直线x=$\frac{π}{8}$对称,可得$\frac{π}{4}$+2m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,即m=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,故m的最小值为$\frac{5π}{12}$.
此时,g(x)=$\sqrt{3}$sin(2x+$\frac{5π}{6}$-$\frac{π}{6}$)=$\sqrt{3}$sin(2x+$\frac{2π}{3}$)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),
在$[0,\frac{π}{4}]$上,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],cos(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],
∴$\sqrt{3}$cos(2x+$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$],即g(x)在$[0,\frac{π}{4}]$上的值域为[-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$].

点评 本题主要考查三角恒等变换,正弦函数的周期性和图象的对称性,y=Asin(ωx+φ)的图象变换规律,余弦函数的定义域和值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网