题目内容

2.如图,圆C内切于扇形AOB,∠AOB=$\frac{π}{3}$,若向扇形AOB内随机投掷300个点,则落入圆内的点的个数估计值为(  )
A.450B.400C.200D.100

分析 本题是一个等可能事件的概率,试验发生包含的事件对应的包含的事件对应的是扇形AOB,满足条件的事件是圆,根据题意,构造直角三角形求得扇形的半径与圆的半径的关系,进而根据面积的求法求得扇形OAB的面积与⊙P的面积比,可得概率,即可得出结论..

解答 解:由题意知本题是一个等可能事件的概率,设圆C的半径为r,
试验发生包含的事件对应的是扇形AOB,
满足条件的事件是圆,其面积为⊙C的面积=π•r2
连接OC,延长交扇形于P.
由于CE=r,∠BOP=$\frac{π}{6}$,OC=2r,OP=3r,
则S扇形AOB=$\frac{π•(3r)^{2}}{6}$=$\frac{3π{r}^{2}}{2}$;
∴⊙C的面积与扇形OAB的面积比是$\frac{2}{3}$.
∴概率P=$\frac{2}{3}$,
∵向扇形AOB内随机投掷300个点,
∴落入圆内的点的个数估计值为300×$\frac{2}{3}$=200.
故选C.

点评 本题是一个等可能事件的概率,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.连接圆心和切点是常用的辅助线做法,本题的关键是求得扇形半径与圆半径之间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网