题目内容

20.已知$p:|{1-\frac{x-1}{3}}|≤2$;q:x2-4x+4-m2≤0(m>0)若?p是?q的必要非充分条件,求实数m的取值范围.

分析 分别求出关于p,q成立的x的范围,根据充分必要条件的定义以及集合的包含关系得到关于m的不等式组,解出即可.

解答 解:由|1-$\frac{x-1}{3}$|≤2,解得:-2≤x≤10,
故p:x∈[-2,10];
由x2-4x+4-m2≤0(m>0),
解得:2-m≤x≤2+m,
故q:x∈[2-m,2+m],
若?p是?q的必要非充分条件,
即q是p的必要不充分条件,
即[-2,10]?[2-m,2+m],
故$\left\{\begin{array}{l}{2-m≤-2}\\{2+m≥10}\end{array}\right.$,(“=“不同时成立),
解得:m≥8.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网