题目内容
20.已知$p:|{1-\frac{x-1}{3}}|≤2$;q:x2-4x+4-m2≤0(m>0)若?p是?q的必要非充分条件,求实数m的取值范围.分析 分别求出关于p,q成立的x的范围,根据充分必要条件的定义以及集合的包含关系得到关于m的不等式组,解出即可.
解答 解:由|1-$\frac{x-1}{3}$|≤2,解得:-2≤x≤10,
故p:x∈[-2,10];
由x2-4x+4-m2≤0(m>0),
解得:2-m≤x≤2+m,
故q:x∈[2-m,2+m],
若?p是?q的必要非充分条件,
即q是p的必要不充分条件,
即[-2,10]?[2-m,2+m],
故$\left\{\begin{array}{l}{2-m≤-2}\\{2+m≥10}\end{array}\right.$,(“=“不同时成立),
解得:m≥8.
点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.
练习册系列答案
相关题目
8.
如图,在直三棱柱ABC-A1B1C1中,∠CAB=90°,AC=AB=AA1,则异面直线AC1,A1B所成角的余弦值为( )
| A. | $-\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
12.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层按公比为2的等比数列递增).根据此诗,可以得出塔的顶层和底层共有( )
| A. | 3盏灯 | B. | 192盏灯 | C. | 195盏灯 | D. | 200盏灯 |
10.已知p>0,q>0,随机变量ξ的分布列如下:
若E(ξ)=$\frac{4}{9}$.则p2+q2=( )
| ξ | p | q |
| P | q | p |
| A. | $\frac{4}{9}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{9}$ | D. | 1 |