题目内容

4.已知f(x)=ax3,g(x)=9x2+3x-1,当x∈[1,2]时,f(x)≥g(x)恒成立,则a的取值范围是(  )
A.a≤$\frac{41}{8}$B.a≤11C.a≥$\frac{41}{8}$D.a≥11

分析 利用函数的恒成立,分离变量求出a的不等式,然后利用函数的导数求解函数的最值即可.

解答 解:f(x)=ax3,g(x)=9x2+3x-1,当x∈[1,2]时,f(x)≥g(x)恒成立,
可得a≥$\frac{9}{x}$+$\frac{3}{{x}^{2}}$-$\frac{1}{{x}^{3}}$,令$\frac{1}{x}$=t,则t∈[$\frac{1}{2}$,1].
a≥9t+3t2-t3.t∈[$\frac{1}{2}$,1]恒成立,
y=9t+3t2-t3.t∈[$\frac{1}{2}$,1],可得y′=9-6t-3t2=3[4-(t+1)2]≥0,函数y是增函数,
最大值为:f(1)=11.可得a≥11.
故选:D.

点评 本题考查函数的导数的综合应用,函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网