题目内容

已知向量
a
=(-
12
13
5
13
),且向量
b
在向量
a
的方向上的投影为
13
,则
a
b
为(  )
A、
13
B、
13
5
C、13
D、
5
13
考点:平面向量数量积的运算
专题:平面向量及应用
分析:先求|
a
|,再求|
b
|cosθ,从而可根据数量积的定义求得
a
b
解答: 解:设向量
a
b
的夹角为θ,
由已知得|
a
|=
(-
12
13
)2+(
5
13
)2
=1
,|
b
|cosθ=
13

a
b
=|
a
||
b
|cosθ=1×
13
=
13

故选A.
点评:本题属于基础题,主要考查了向量的模的坐标计算公式,投影的概念及向量数量积的定义,从求解过程来看,掌握基本的概念和基本的计算公式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网